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1. Introduction

Symmetric positive systems (also known as Friedrichs systems) form a class of boundary value
problems which allow the study of a wide range of differential equations in a unified framework.
They were introduced by Kurt Otto Friedrichs [F] in 1958 in an attempt to handle transonic flow
problems, which are partially hyperbolic and partially elliptic in different parts of domain.

To be specific, in his seminal paper [F] Friedrichs considered a first-order partial differential
operator L : L2(Ω; Rr) −→ D′(Ω; Rr) of the form

Lu :=

d∑
k=1

∂k(Aku) + Cu ,

the coefficients being real matrix functions Ak ∈ W1,∞(Ω; Mr(R)), for k ∈ 1..d, while C ∈
L∞(Ω; Mr(R)), where Ω ⊆ Rd is an open bounded set with Lipschitz boundary Γ (we shall
denote its closure by Cl Ω = Ω ∪ Γ) and d, r ∈ N. Of course, at that time he assumed more
regularity than it is stated here. It is also required that the coefficients satisfy

(F1) each Ak is symmetric: Ak = A>k ,

(F2) (∃µ0 > 0) C + C> +

d∑
k=1

∂kAk > 2µ0I (a.e. on Ω) ,

and then such an operator L is called the Friedrichs operator or the symmetric positive oper-
ator. The corresponding first-order system of partial differential equations Lu = f, for given
f ∈ L2(Ω; Rr), is called the Friedrichs system or the symmetric positive system. Also note that
we have used the divergence form of the differential operator in order to allow coefficients with
lower regularity (the difference (∂kAk)u can be included in the term Cu).

In order to describe boundary conditions, following Friedrichs [F] we first define a matrix
field on the boundary, namely

Aν :=

d∑
k=1

νkAk ,

where ν = (ν1, ν2, · · · , νd)> ∈ L∞(Γ; Rd) is the outward unit normal on Γ. Note that Aν is of
class L∞ on Γ. The boundary condition is then prescribed by

(Aν −M)u|Γ = 0 ,

where M : Γ −→ Mr(R) is a given matrix field on the boundary, and by varying M one can
enforce different boundary conditions. Friedrichs required the following two conditions (for a.e.
x ∈ Γ) to hold:

(FM1) (∀ ξ ∈ Rr) M(x)ξ · ξ > 0 ,

(FM2) Rr = ker
(
Aν(x)−M(x)

)
+ ker

(
Aν(x) + M(x)

)
;

and such M he called an admissible boundary condition.
The boundary value problem thus reads: for given f ∈ L2(Ω; Rr) find u such that

(1)

{
Lu = f

(Aν −M)u|Γ = 0
.

It is important to emphasise that this setting covers a large number of equations of continuum
physics, regardless of their type. Also a different types of (initial) boundary conditions (Dirichlet,
Neumann, Robin) can be treated in this way as well. For some specific examples of (initial)

Nenad Antonić & Krešimir Burazin & Marko Vrdoljak 1



Journal of Mathematical Analysis and Applications Heat equation as a Friedrichs system

boundary value problems that can be treated via theory of Friedrichs systems we refer to [ABV1,
BDG, EG, EGC, J].

As assumptions on coefficients are rather weak, the existence of a classical solution (C1 or
W1,∞) cannot be expected. It can be shown that, in general, the solution belongs only to the
graph space of operator L:

W =
{

u ∈ L2(Ω; Rr) : Lu ∈ L2(Ω; Rr)
}
.

For more information about these spaces we refer to [AB1, B, J]. Here we would only like to
mention that W is a separable Hilbert space with inner product

〈 u | v 〉L := 〈 u | v 〉L2(Ω;Rr) + 〈 Lu | Lv 〉L2(Ω;Rr) .

The corresponding norm is denoted by

‖u‖L =
√
‖u‖2

L2(Ω;Rr)
+ ‖Lu‖2

L2(Ω;Rr)
,

and functions from C∞c (Cl Ω; Rr) (and thus also from H1(Ω; Rr)) are dense in W .
One of the main difficulties in the theory of Friedrichs systems was the interpretation of

boundary conditions: it was not a priori clear what would be the meaning of restriction u|Γ for

functions u from the graph space. Later, it was shown that u|Γ can be interpreted as an element

of H−
1
2 (Γ; Rr), and the appropriate well-posedness results for the weak formulation of (1), under

additional assumptions, were proved [Ra, J].

Abstract theory of Friedrichs systems

More recently, Ern, Guermond and Caplain [EG1, EGC] suggested another approach to the
Friedrichs theory, which completely avoids the question of traces for functions from the graph
space. They developed an abstract theory of Friedrichs systems written in terms of operators
acting on Hilbert spaces, and gave an intrinsic description of boundary conditions. The trace
operator was replaced by the boundary operator D ∈ L(W ;W ′) defined by

W ′〈Du, v 〉W := 〈 Lu | v 〉L2(Ω;Rr) − 〈 u | L̃v 〉L2(Ω;Rr) , u, v ∈W ,

where L̃ : L2(Ω; Rr) −→ D′(Ω; Rr), the formally adjoint operator to L, was defined by

L̃v := −
d∑

k=1

∂k(Akv) +
(
C> +

d∑
k=1

∂kAk

)
v .

In fact, it turned out that operator D had better properties than the trace operator, among which
was its symmetry:

(∀ u, v ∈W ) W ′〈Du, v 〉W = W ′〈Dv, u 〉W .

Using these properties Ern at al. [EGC] proved a weak well-posedness result in this abstract
setting. When applied to the classical partial differential operator L, their main result reads:

Theorem 1. Let (F1)–(F2) hold, and let subspaces V and Ṽ of W satisfy

(V1)
(∀ u ∈ V ) W ′〈Du, u 〉W > 0 ,

(∀ v ∈ Ṽ ) W ′〈Dv, v 〉W 6 0 ,

(V2) V = D(Ṽ )0 , Ṽ = D(V )0 ,

where 0 stands for the annihilator.
Then the restrictions of operators L|V : V −→ L and L̃|

Ṽ
: Ṽ −→ L are isomorphisms.
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Note that the information about boundary conditions is hidden in the structure of subspace
V . In the sequel we shall refer to both properties (V1) and (V2) as (V), and similarly we shall
use (F), (FM), etc.

Ern et al. [EGC] also investigated different representations of boundary conditions in the
abstract setting which correlated with those known in the classical Friedrichs theory. They were
also interested in their mutual relationship, which raised a number of open questions. In [AB1,
AB2, AB3] we closed the most important question by proving that those abstract conditions
were, in fact, all equivalent. The new development was based on the fact that the theory can be
expressed in terms of Krĕın spaces (a particular kind of indefinite inner product spaces). This
approach allowed us to simplify a number of earlier proofs as well.

One of these representations, corresponding to the matrix boundary field M satisfying (FM),
uses an operator M ∈ L(W ;W ′) with properties

(M1) (∀ u ∈W ) W ′〈Mu, u 〉W > 0 ,

and

(M2) W = ker(D −M) + ker(D +M) .

Such an operator is also called the boundary operator, as kerM = kerD = W0 := Cl WC∞c (Ω; Rr).
In [AB2] we proved the equivalence between properties (V) and (M) in the following sense:

two subspaces V and Ṽ of W satisfy (V) if and only if there is (not necessary unique) operator

M ∈ L(W ;W ′) with properties (M), such that V = ker(D −M) and Ṽ = ker(D + M∗). Thus,
the weak well-posedness result can also be expressed as follows.

Theorem 2. Let (F) be valid and assume that there exists an operatorM ∈ L(W ;W ′) satisfying
(M). Then the restricted operators

L|ker(D−M)
: ker(D −M) −→ L2(Ω; Rr) and L̃|ker(D+M∗)

: ker(D +M∗) −→ L2(Ω; Rr)

are isomorphisms.

The above simplification of abstract theory paved the way to new investigations of the precise
relationship between the classical Friedrichs theory and its abstract counterpart.

The analogy between the properties (M) for operator M and (FM) for matrix boundary
condition M is apparent. A natural question to be investigated is that of the nature of relationship
between matrix field M and boundary operator M . More precisely, to find additional conditions
on the matrix field M satisfying (FM) which will guarantee the existence of a suitable operator
M ∈ L(W ;W ′) with properties (M). Here, a suitable operator means that the result of Theorem
2 really presents a weak well–posedness result for problem (1) in the following sense: if for
given f ∈ L2(Ω; Rr), u ∈ ker(D − M) is such that Lu = f, where we additionally have u ∈
C1(Ω; Rr) ∩ C(Cl Ω; Rr), then u satisfies (1) in the classical sense.

In [AB4, ABV1, ABV2] we found sufficient conditions insuring that matrix field M defines
an appropriate operator M . The connection between M and M is given by

(2) (∀ u, v ∈ C∞c (Cl Ω; Rr)) W ′〈Mu, v 〉W =

∫
Γ

M(x)u|Γ(x) · v|Γ(x)dS(x) ,

as a result of the known connection [AB1, B, EGC] between operator D and matrix field Aν :

(3) (∀ u, v ∈ C∞c (Cl Ω; Rr)) W ′〈Du, v 〉W =

∫
Γ

Aν(x)u|Γ(x) · v|Γ(x)dS(x) .

In fact, both above formulæ can easily be extended to u, v ∈ H1(Ω; Rr), provided that the
restriction to Γ is replaced by the trace operator.

In [ABV1] the following theorem was proved and applied to some hyperbolic and elliptic
equations.
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Theorem 3. Let P : Cl Ω −→ Mr(R) be a Lipschitz matrix function satisfying:

(P1) (∃R ∈W1,∞(Ω; Mr(R)))(∀ k ∈ 1..d) AkP = RAk,

(P2) for almost every x ∈ Γ the matrix Aν(x)(I− 2P(x)) is positive semidefinite, and

(P3) for almost every x ∈ Γ it holds that ker
(
Aν(x)P(x)

)
+ ker

(
(Aν(x)(I−P(x))

)
= Rr.

Then formula (2), for M(x) := Aν(x)(I−2P(x)) on Γ, defines a bounded operator M ∈ L(W ;W ′)
satisfying (M).

In this paper we first try to apply this theorem to the heat equation, and pinpoint some
obstacles that prevents us in getting good results. At the same time we shall use the intrinsic
result of Theorem 1 in order to get appropriate well-possednes results for the initial–boundary
value problem for heat equation.

Better understanding of the theory for the heat equation written as a Friedrichs system
will hopefully bring us closer to the satisfactory theory for mixed-type equations. As a more
immediate goal, we hope to be able to get a homogenisation result. The unification of equations
of different type (elliptic/parabolic/hyperbolic) within the framework of Friedrichs systems has
already shown practical benefits in their numerical treatment. Namely, the convergence analysis
can be done in a more unified way, while the numerical code can also be shared. A number of
recent results on discontinuous Galerkin methods for Friedrichs systems can be found in [BDG,
DE, EG1, EG2, EG3, J].

The paper is organised as follows: In the second section we write the heat equation as a
Friedrichs system and show that the method described in [ABV1], i. e. Theorem 3 cannot be
applied here. In the third section we describe the graph space W and the boundary operator
D. In order to get a well-posedness result it is important to represent D by boundary integrals,
which is done in Theorem 4. In the following section we achieve well-posedness result for the
Dirichlet boundary condition: first we try to guess a good boundary operator M , and then turn
our attention to intrinsic conditions of Theorem 1, which enables us to get a well-posedness result.
At the end of this section we show that the two-field theory for Friedrichs systems with partial
coercivity [EG2, EG3], initially developed for elliptic equations, can be applied to the parabolic
equation as well. In the fifth section we try to clarify whether our starting boundary operator M
is continuous and satisfies (M). We reduce this to the question of specific decomposition of the
graph space (Corollary 2), which remains open. Finally, we close the paper with some concluding
remarks, and an Appendix containing basic information regarding the evolution spaces, which
were used in the text.

2. Heat equation as a Friedrichs system

Let Ω ⊆ Rd be an open and bounded set with the Lipschitz boundary Γ, T > 0 and ΩT :=
Ω× 〈0, T 〉. The parts of boundary ∂ΩT we denote as follows: Γ0 := Ω× {0}, ΓT := Ω× {T} and
Γd := Γ× 〈0, T 〉. We consider the heat equation in the following form

∂tu− div x(A∇xu) + b · ∇xu+ cu = f in ΩT ,

where f ∈ L2(ΩT ), c ∈ L∞(ΩT ), b ∈ L∞(ΩT ; Rd) and A ∈ L∞(ΩT ; Md(R)) (note that the
coefficients depend both on x and t). Suppose that there exist constants β > α > 0 such that
A(x, t) is a symmetric matrix with eigenvalues between α and β, almost everywhere on ΩT .

Similarly as it was the case for the elliptic equation [ABV1], this equation can be rewritten as
a Friedrichs system in the following way: consider a new unknown vector function taking values
in Rd+1

u =

[
−A∇u
u

]
,

Nenad Antonić & Krešimir Burazin & Marko Vrdoljak 4



Journal of Mathematical Analysis and Applications Heat equation as a Friedrichs system

matrices Ak = ek⊗ed+1 +ed+1⊗ek ∈ Md+1(R), for k ∈ 1..d (here by e1, . . . ed+1 we have denoted
the standard basis for Rd+1) and block matrix function

C =

[
A−1 0

−(A−1b)> c

]
∈ L∞((ΩT ; Md+1(R))) ,

all coinciding with those used for the elliptic equation, while Ad+1 = ed+1 ⊗ ed+1 ∈ Md+1(R).
Note that our domain is now ΩT , and that first d variables are space variables of the original
equation, while (d+ 1)-st variable is the time variable. We choose this order of variables in order
to have our matrices Ak and C in a form as close as possible to that in the elliptic case.

The positivity condition C + C> > 2µ0I is fulfilled if and only if the Schur complement
c− 1

4A−1b ·b is uniformly positive, i.e. if there exists a constant γ > 0 such that c− 1
4A−1b ·b > γ

on ΩT (see [ABV1] for details).
Let us now apply Theorem 3 (with d+ 1 in place of d and ΩT in place of Ω): in order to fulfil

condition (P1) we need to determine all possible P ∈W1,∞(ΩT ; Mr(R)) such that

(∃R ∈W1,∞(ΩT ; Mr(R)))(∀ k ∈ 1..d+ 1) AkP = RAk .

After testing this condition for first d matrices Ak, we obtain

P =

[
aI η
0> b

]
and R =

[
bI 0
η> a

]
,

where a, b and η are Lipschitz functions on ΩT . Since Ad+1 has to satisfy (P1) as well, we easily
get the requirement b = a, and thus

P =

[
aI η
0> a

]
and R =

[
aI 0
η> a

]
.

Note that the outward unit normal ν = (νd, νt)
> on boundary ∂ΩT is now a (d + 1)-

dimensional vector function on ∂ΩT , whose first d components, corresponding to the space direc-
tions, we denote by νd, while its last component, corresponding to the time direction, we denote
by νt. Therefore, for matrix functions Aν and M we have

Aν =

[
0 νd
ν>d νt

]
and M = Aν(I − 2P) =

[
0 (1− 2a)νd

(1− 2a)ν>d (1− 2a)νt − 2νd · η

]
.

Condition (P2) now reads

(∀ ξ ∈ Rd+1) 2(1− 2a)ξd+1ν · ξ − (1− 2a)νtξ
2
d+1 − 2ξ2

d+1νd · η > 0 ,

which leads us to consider the following two cases:
a) a = 1

2 and νd · η 6 0;

b) a 6= 1
2 , νd = 0, and (1− 2a)νt > 0.

It order to check (P3), we first write it in a form more suitable for calculations.

Lemma 1. The condition (P3) of Theorem 3 is equivalent to equality Aν(x)P(x)(I−P(x)) = 0
valid for almost every x from the boundary of domain.

Dem. Let (P3) hold, and for an arbitrary ξ ∈ Rd+1 let ξ1 ∈ ker(AνP) be such that ξ − ξ1 ∈
ker(Aν(I−P)) (we suppress explicitly writing x in this proof). Then

0 = Aν(I−P)(ξ − ξ1) = Aν(I−P)ξ −Aνξ1 = Aν

(
(I−P)ξ − ξ1

)
,

which implies (I−P)ξ − ξ1 ∈ ker Aν . Since ker Aν ⊆ ker(AνP), it follows that

0 = AνP
(

(I−P)ξ − ξ1

)
= AνP(I−P)ξ ,

and therefore AνP(I−P) = 0, by the arbitrariness of ξ.
In order to prove the converse statement, for ξ ∈ Rd+1 define ξ1 := (I − P)ξ, so that

ξ − ξ1 = Pξ. Now it easily follows

AνPξ1 = AνP(I−P)ξ = 0 ,

Aν(I−P)(ξ − ξ1) = Aν(I−P)Pξ = 0 ,

which proves the statement.
Q.E.D.
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For the heat equation, the condition AνP(I−P) = 0 becomes

a(1− a)νd = 0 and (1− 2a)νd · η + a(1− a)νt = 0 .

With these conditions the above case (a) leads to νd = 0 and νt = 0, which contradicts |ν| = 1.
Since the case (b) already contains the constraint νd = 0 it means that on the part Γd of boundary
Γ conditions (P2) and (P3) of Theorem 3 cannot be achieved, and thus we cannot apply Theorem
3 to our Friedrichs systems. However, we should keep in mind that Theorem 3 gives only sufficient
conditions for well-posedness, so in the sequel we shall try to obtain the well-posedness result for
the heat equation in a different way.

3. Graph space and boundary operator

For the heat equation written as a Friedrichs system, the operator L is given by (note that
we use u = (ud, ud+1)> below)

(4) L
[

ud

ud+1

]
=

[
∇xud+1 + A−1ud

∂tud+1 + div xud + cud+1 −A−1b · ud

]
,

while the corresponding graph space is

W =
{

u ∈ L2(ΩT ; Rd+1) : ∇xud+1 ∈ L2(ΩT ; Rd) & ∂tud+1 + div xud ∈ L2(ΩT )
}

=
{

u ∈ L2
div(ΩT ) : ∇xud+1 ∈ L2(ΩT ; Rd)

}
=
{

u ∈ L2
div(ΩT ) : ud+1 ∈ L2(0, T ; H1(Ω))

}
,

where

L2
div(ΩT ) =

{
u ∈ L2(ΩT ; Rd+1) : div u = ∂tud+1 + div xud ∈ L2(ΩT )

}
.

Here we identified spaces L2(ΩT ) and L2(0, T ; L2(Ω)) as they are isometrically isomorphic (see
Appendix for some basic properties of Lp spaces with values in Banach spaces which will be
frequently used in the sequel). One can easily see that norm ‖ · ‖L on W is equivalent to (∼
stands for equivalence between norms)

(5)

‖u‖L ∼
√
‖u‖2

L2(ΩT ;Rd+1)
+ ‖∇xud+1‖2L2(ΩT ;Rd)

+ ‖div u‖2
L2(ΩT )

∼
√
‖u‖2

L2
div(ΩT )

+ ‖∇xud+1‖2L2(ΩT ;Rd)

∼
√
‖ud‖2L2(ΩT ;Rd)

+ ‖ud+1‖2L2(0,T ;H1(Ω))
+ ‖div u‖2

L2(ΩT )
.

Let us now introduce

W (0, T ) =
{
u ∈ L2(0, T ; H1(Ω)) : ∂tu ∈ L2(0, T ; H−1(Ω))

}
,

which is a Banach space when equipped by norm

‖u‖W (0,T ) =
√
‖u‖2

L2(0,T ;H1(Ω))
+ ‖∂tu‖2L2(0,T ;H−1(Ω))

.

The following lemma, together with the imbedding of W (0, T ) to C([0, T ]; L2(Ω)) (see Ap-
pendix), will be of great importance for obtaining well-posedness results.
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Lemma 2. The projection u = (ud, ud+1)> 7→ ud+1 is a continuous linear operator from W to
W (0, T ).

Dem. Let u ∈ W . Then ∂tud+1 + div xud ∈ L2(ΩT ) ' L2(0, T ; L2(Ω)). Using the continu-
ity of imbedding of L2(Ω) in H−1(Ω) and Theorem 10 (Appendix), we get ∂tud+1 + div xud ∈
L2(0, T ; H−1(Ω)). Analogously, using the continuity of div x : L2(Ω) −→ H−1(Ω), we get div xud ∈
L2(0, T ; H−1(Ω)), and thus ∂tud+1 ∈ L2(0, T ; H−1(Ω)). Finally, ud+1 ∈ W (0, T ), and as all oper-
ators involved in the above calculations where continuous, we get the continuity of projection as
well.

Q.E.D.

One can easily see that boundary operator D ∈ L(W ;W ′) takes the form

W ′〈Du, v 〉W =

∫ T

0

∫
Ω

(∇xud+1 · vd + vd+1div u +∇xvd+1 · ud + ud+1div v) dx dt ,

for any u = (ud, ud+1)>, v = (vd, vd+1)> ∈W . The low regularity of functions in W does not allow
us to apply the divergence theorem directly. For that purpose, it is enough to strengthen the
condition div u = ∂tud+1 + div xud ∈ L2(ΩT ) by assuming that both summands belong to L2(ΩT ).
This motivates the definition of

W̃ := {u ∈W : ∂tud+1, div xud ∈ L2(ΩT )} ,

which is a dense subspace of W . Notice that for u, v ∈ W̃ we have

∇xud+1 · vd + vd+1div u +∇xvd+1 · ud + ud+1div v

= ∇xud+1 · vd + ud+1div xvd +∇xvd+1 · ud + vd+1div xud + ud+1∂tvd+1 + vd+1∂tud+1 .

Since v ∈ W̃ , vd belongs to L2(0, T ; L2
div(Ω)) so (by Theorem 10) its normal trace νd · vd on

the boundary Γd belongs to L2(0, T ; H−
1
2 (Γ)). Similarly, as u ∈ W , we have that ud+1 ∈

L2(0, T ; H1(Ω)), so its trace on Γ belongs to L2(0, T ; H
1
2 (Γ)). Using Green’s first formula, al-

most everywhere on 〈0, T 〉 we have∫
Ω

(∇xud+1 · vd + ud+1div xvd) dx =
H−

1
2 (Γ)
〈νd · vd, ud+1 〉

H
1
2 (Γ)

.

By the generalised Hölder inequality for evolution spaces (see Appendix), both sides of the equality
belong to L1(〈0, T 〉). Analogously,∫

Ω
(∇xvd+1 · ud + vd+1div xud) dx =

H−
1
2 (Γ)
〈νd · ud, vd+1 〉

H
1
2 (Γ)
∈ L1(〈0, T 〉) .

Finally, for u, v ∈ W̃ , we have ud+1∂tvd+1 +vd+1∂tud+1 = ∂t(ud+1vd+1) ∈ L1(ΩT ), so Green’s first
formula gives∫ T

0

∫
Ω

(ud+1∂tvd+1 + vd+1∂tud+1) dx dt =

∫
Ω
ud+1(·, T )vd+1(·, T ) dx−

∫
Ω
ud+1(·, 0)vd+1(·, 0) dx .

These calculations lead to the following expression for D:

(6)
W ′〈Du, v 〉W =

∫ T

0

(
H−

1
2 (Γ)
〈νd · vd, ud+1 〉

H
1
2 (Γ)

+
H−

1
2 (Γ)
〈νd · ud, vd+1 〉

H
1
2 (Γ)

)
dt

+

∫
Ω
ud+1(·, T )vd+1(·, T ) dx−

∫
Ω
ud+1(·, 0)vd+1(·, 0) dx , u, v ∈ W̃ .
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If we additionally assume that vd ∈ L2(0, T ; H1(Ω; Rd)), the normal trace νd · vd belongs to
L2(0, T ; L2(Γ)), so the above dual product can be replaced by an integral:

H−
1
2 (Γ)
〈νd · vd, ud+1 〉

H
1
2 (Γ)

=

∫
Γ
ud+1 νd · vd dSx .

Particularly, as H1(ΩT ; Rd+1) is dense in W [AB1], the linear operator D ∈ L(W ;W ′) is uniquely
determined by

(7)
W ′〈Du, v 〉W =

∫ T

0

∫
Γ
(ud+1 νd · vd + vd+1 νd · ud) dSx dt+

∫
Ω
ud+1(·, T )vd+1(·, T ) dx

−
∫

Ω
ud+1(·, 0)vd+1(·, 0) dx , u, v ∈ H1(ΩT ; Rd+1) .

Theorem 4. Let u ∈ W , and un, v ∈ H1(ΩT ; Rd+1) be such that the sequence (un) converges
to u in W . Then

(8)
W ′〈Du, v 〉W = lim

n

∫ T

0

∫
Γ
vd+1 νd · un

d dSx dt+

∫ T

0

∫
Γ
ud+1 νd · vd dSx dt

+

∫
Ω
ud+1(·, T )vd+1(·, T ) dx−

∫
Ω
ud+1(·, 0)vd+1(·, 0) dx .

Dem. Using formula (7) and the continuity of D : W −→W ′ we get

(9)

W ′〈Du, v 〉W = lim
n

W ′〈Dun, v 〉W

= lim
n

(∫ T

0

∫
Γ
vd+1 νd · un

d dSx dt+

∫ T

0

∫
Γ
und+1 νd · vd dSx dt

+

∫
Ω
und+1(·, T )vd+1(·, T ) dx−

∫
Ω
und+1(·, 0)vd+1(·, 0) dx

)
,

and from (53) it follows that convergence un −→ u in W is equivalent to the following three
convergences

und+1 −→ ud+1 in L2(0, T ; H1(Ω)) ,

un
d −→ ud in L2(0, T ; L2(Ω; Rd)) ,

div un −→ div u in L2(0, T ; L2(Ω)) .

As the first step we calculate the limit of the last two integrals in (9). By Lemma 2, und+1 −→
ud+1 in W (0, T ), and, by the imbedding (Appendix, Theorem 12), also in C([0, T ]; L2(Ω)). In
particular, und+1(·, 0) −→ ud+1(·, 0) and und+1(·, T ) −→ ud+1(·, T ) in L2(Ω), and therefore∫

Ω
und+1(·, T )vd+1(·, T ) dx −→

∫
Ω
ud+1(·, T )vd+1(·, T ) dx ,∫

Ω
und+1(·, 0)vd+1(·, 0) dx −→

∫
Ω
ud+1(·, 0)vd+1(·, 0) dx .

The convergence und+1 −→ ud+1 in L2(0, T ; H1(Ω)) implies the convergence of traces on Γ, by

Theorem 10: und+1 −→ ud+1 in L2(0, T ; H
1
2 (Γ)). Since the normal trace of vd on Γd belongs to

L2(Γd), it follows

lim
n

∫ T

0

∫
Γ
und+1 νd · vd dSx dt =

∫ T

0

∫
Γ
ud+1 νd · vd dSx dt ,

which proves the theorem.
Q.E.D.
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4. Dirichlet boundary conditions

Let us now investigate the possibility of representing the initial boundary value problem for
the heat equation

(10)

{
∂tu− div x(A∇xu) + b · ∇xu+ cu = f in ΩT

u = 0 on Γ0 ∪ Γd

as a boundary value problem for the Friedrichs system.

Remark. If one wants to treat nonhomogeneous initial and boundary conditions, their ho-
mogenisation needs to be done first; this can be done for sufficiently regular initial and boundary
conditions [W, Section 28].

We shall use the following approach: first we guess a matrix field M satisfying (FM), and
then try to prove that this matrix field defines an operator M ∈ L(W ;W ′) satisfying (M) via
formula (2).

If we choose

M =

[
0 −νd
ν>d aνt

]
,

where a is a scalar function defined on ∂ΩT , such that a|Γ0
= −1 and a|ΓT

= 1, then

Aν −M =

[
0 2νd

0> (1− a)νt

]
,

which imposes the Dirichlet boundary condition for the heat equation (with homogeneous initial
condition)

u|Γ0∪Γd

= 0 .

The nonnegativity condition (FM1) then reduces to

(∀ ξ ∈ Rd+1) aνtξ
2
d+1 > 0 ,

which is satisfied with the above a. One can easily check that we have ker(Aν + M) = Rd+1 on
Γ0 , ker(Aν−M) = Rd+1 on ΓT , while on Γd we have ker(Aν−M) = Rd×{0} and ker(Aν +M)
is described by νd · ξd = 0, for ξ = (ξd, ξd+1)> ∈ Rd+1. It follows that (FM2) holds as well.

The corresponding operator M given by (2) then takes the form

(11)
W ′〈Mu, v 〉W =

∫ T

0

∫
Γ
(−ud+1 νd · vd + vd+1 νd · ud) dSx dt

+

∫
Ω
ud+1(·, T )vd+1(·, T ) dx +

∫
Ω
ud+1(·, 0)vd+1(·, 0) dx ,

for any u, v ∈ H1(ΩT ; Rd+1). However, we do not know whether the above formula defines a
continuous operator M : W −→W ′. If this is the case, then

(12) W ′〈 (D −M)u, v 〉W = 2

∫ T

0

∫
Γ
ud+1 νd · vd dSx dt− 2

∫
Ω
ud+1(·, 0)vd+1(·, 0) dx ,

and, proceeding as in the proof of Theorem 4, one can easily see that this formula would be valid
for an arbitrary u ∈ W . The following lemma suggests that ker(D −M) should consist of those
functions in the graph space whose last components satisfy ud+1|Γ0∪Γd

= 0.
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Lemma 3. If formula (11) defines an operator M ∈ L(W ;W ′) satisfying (M), then

ker(D −M) =
{

u ∈W : ud+1 ∈ L2(0, T ; H1
0(Ω)), ud+1(·, 0) = 0 a.e. on Ω

}
.

Dem. By using the density argument, one proves that (D −M)u = 0 if and only if W ′〈 (D −
M)u, v 〉W = 0, for every v ∈ H1(ΩT ; Rd+1). From (12) it trivially follows that the right hand
side of the above identity is included in ker(D −M).

In order to prove the converse inclusion, let us take u ∈ ker(D −M) and v = (0, vd+1)> ∈
H1(ΩT ; Rd+1) such that vd+1(x, t) = g(t)h(x) with g ∈ C∞([0, T ]), g(0) = 1 and h ∈ H1(Ω).
Then by (12)

0 = W ′〈 (D −M)u, v 〉W = −2

∫
Ω
ud+1(·, 0)vd+1(·, 0) dx = −2

∫
Ω
ud+1(·, 0)h dx ,

and therefore ud+1(·, 0) vanishes by the arbitrariness of h.
If we now take an arbitrary ϕ ∈ L2(Γd) and a sequence (vnd ) in H1(ΩT ; Rd) such that the

corresponding sequence of traces on Γd converges to ϕνd in L2(Γd; Rd), then for vn = (vnd , 0)> ∈
H1(ΩT ; Rd+1) we have

0 = W ′〈 (D −M)u, vn 〉W = lim
n

W ′〈 (D −M)u, vn 〉W

= 2 lim
n

∫ T

0

∫
Γ
ud+1 νd · vnd dSx dt = 2

∫ T

0

∫
Γ
ud+1 ϕdSx dt .

As ϕ is arbitrary, it follows that ud+1 = 0 in L2(Γd), and thus ud+1 ∈ L2(0, T ; H1
0(Ω)).

Q.E.D.

The result of the above lemma is in agreement with the Dirichlet boundary condition which
we want to impose; however, we are still not able to prove that M is continuous. Therefore, we
change our approach, and try to use the intrinsic conditions of Theorem 1.

We start with the subspace V of W , imposing the required initial and boundary conditions

V =
{

u ∈W : ud+1 ∈ L2(0, T ; H1
0(Ω)), ud+1(·, 0) = 0 a.e. on Ω

}
,

and
Ṽ =

{
v ∈W : vd+1 ∈ L2(0, T ; H1

0(Ω)), vd+1(·, T ) = 0 a.e. on Ω
}
.

For the application of Theorem 1, one should calculate annihilators of D(V ) and D(Ṽ ), where
the annihilator G0 of set G ⊆W ′ is defined by

G0 =
{

v ∈W : (∀ g ∈ G) W ′〈 g, v 〉W = 0
}
.

Let us first prove one technical result. The density of space H1(ΩT ; Rd+1) in the graph space
W of any first order partial differential operator holds in general, but for our application we have
to additionally consider the homogeneous Dirichlet boundary condition for the last component.

Lemma 4. The space

Sb =
{

u ∈ H1(ΩT ; Rd+1) : ud+1 = 0 on Γd

}
is dense in

Vb =
{

u ∈W : ud+1 ∈ L2(0, T ; H1
0(Ω))

}
,

in the norm of the graph space W .
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Dem. Using the partition of unity, for given 0 < ε < T
2 one can introduce functions ϕ1, ϕ2 ∈

C∞([0, T ]) such that ϕ1 + ϕ2 = 1 with ϕ1 = 0 on [0, ε] and ϕ2 = 0 on [T − ε, T ]. A given
function u ∈ Vb can be represented by the sum u = ϕ1u + ϕ2u of functions in W , vanishing in a
neighbourhood of t = 0 and t = T , respectively. Therefore, for the proof of the lemma it suffices
to approximate these two terms separately by sequences in Sb. We shall consider only the former,
as the latter can be treated analogously.

Let us take a function u ∈ W which vanishes in a neighbourhood of t = 0. For n ∈ N by τn
we shall denote the translation operator in time variable: τnu(x, t) := u(x, t− 1

n). It is a classical

result that, as n −→∞, we have L2 convergence on Rd+1 of sequences τnu, τndiv u and τn∇xud+1

towards u, div u and ∇xud+1, respectively. More precisely, here we consider the extension of the
original functions to whole Rd+1 by zero (as L2 functions).

Let the mollifying sequence in time variable be denoted by ρm(t) = mρ(mt), where ρ is a
nonnegative infinitely differentiable function with support in 〈−1, 1〉 and integral equal to 1. Now
we follow the Cantor diagonal procedure: for given n we choose m(n) > n sufficiently large such
that (recall that the convolution is taken only in the time variable)

‖ρm(n) ∗ τnu− τnu‖
L2(Rd+1)

<
1

n
,

‖ρm(n) ∗ τndiv u− τndiv u‖
L2(Rd+1)

<
1

n
,

‖ρm(n) ∗ τn∇xu− τn∇xu‖
L2(Rd+1)

<
1

n
.

Therefore, by the triangle inequality we conclude that the sequence vn := ρm(n) ∗ τnu approx-
imates u in the norm of the graph space W . For example, we have

‖div
(
ρm(n) ∗ τnu

)
− div u‖

L2(ΩT )
6 ‖div

(
ρm(n) ∗ τnu

)
− τndiv u‖

L2(ΩT )
+ ‖τndiv u− div u‖L2(ΩT )

= ‖ρm(n) ∗ τndiv u− τndiv u‖
L2(ΩT )

+ ‖τndiv u− div u‖L2(ΩT ) ,

which tends to zero by construction.
The last component vnd+1 has the desired properties, so a simple adjustment is needed only

for vnd , as it does not belong to H1(ΩT ; Rd). As for this part we have no boundary condition,
we can use the classical approximation by a sequence of smooth functions approximating vnd and
div xvnd in L2 norm (notice that the former belongs to L2(ΩT ), since both div vn and ∂tv

n
d+1 do)

and again use the Cantor diagonal procedure.
Q.E.D.

The following theorem assures that conditions (V) are satisfied by the above choice of V and

Ṽ .

Theorem 5. The following statements hold:

Ṽ = D(V )0 and V = D(Ṽ )0 ,

(∀ u ∈ V ) W ′〈Du, u 〉W > 0 ,

(∀ v ∈ Ṽ ) W ′〈Dv, v 〉W 6 0 .

Dem. For the first statement, let us first take arbitrary v ∈ Ṽ and u ∈ V and denote by vn and
un the corresponding approximating sequences in Sb obtained by Lemma 4. Using the continuity
of D and formula (7) we obtain

W ′〈Du, v 〉W = lim
n

W ′〈Dun, vn 〉W

= lim
n

(∫ T

0

∫
Γ

(
und+1 νd · vnd + vnd+1 νd · un

d dSx
)
dt

+

∫
Ω
und+1(·, T )vnd+1(·, T ) dx−

∫
Ω
und+1(·, 0)vnd+1(·, 0) dx

)
.
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Since und+1 and vnd+1 are zero on Γd, the first two integrals in the last expression vanish. In the
last two integrals we can pass to the limit since the convergence in W implies the convergence
of und+1(·, 0) and vnd+1(·, T ) to ud+1(·, 0) = vd+1(·, T ) = 0 in L2(Ω). Therefore, W ′〈Du, v 〉W = 0,

which implies v ∈ D(V )0, as u ∈ V is arbitrary.
Conversely, for some v ∈ D(V )0, let (vn) ∈ H1(ΩT ; Rd+1) be a sequence approximating v in

the W norm. As the first step, let us take u = (ud, ud+1) ∈ V ∩ H1(ΩT ; Rd+1) such that ud = 0
and ud+1(t,x) = g(t)h(x) with g ∈ C∞c (〈0, T ]), g(T ) = 1 and h ∈ H1

0(Ω). Then by the symmetry
of D and Theorem 4 we have

W ′〈Du, v 〉W = W ′〈Dv, u 〉W =

∫
Ω
ud+1(·, T )vd+1(·, T ) dx =

∫
Ω
hvd+1(·, T ) dx ,

which is zero by assumption v ∈ D(V )0. As h is arbitrary, it follows vd+1(·, T ) = 0.
To conclude the proof, we take arbitrary ϕ ∈ L2(Γ) and a sequence (hk) in H1(Ω; Rd) such

that the corresponding sequence of traces to Γ converges to ϕνd in L2(Γ; Rd). Finally, given any
function ψ ∈ C∞c (〈0, T 〉), we take a sequence (of tensor products of a function in t and a function
in x) uk = (ψhk, 0)> ∈ V ∩H1(Ω; Rd+1), implying 0 = W ′〈Duk, v 〉W , for any k ∈ N. Similarly as
above, using the symmetry of D and Theorem 4 we conclude that

(13) 0 = W ′〈Duk, v 〉W =

∫ T

0

∫
Γ
vd+1 νd · uk

d dSxdt = 〈 vd+1 | νd · uk
d 〉L2(0,T ;L2(Γ)) .

By the Lebesgue dominated convergence theorem we have uk
d −→ ψϕνd in L2(0, T ; L2(Γ; Rd)).

More precisely, we use

‖uk
d(t, ·)‖L2(Γ;Rd) −→ ‖ψ(t)ϕνd‖L2(Γ;Rd) , t ∈ 〈0, T 〉 ,

‖uk
d(t, ·)‖L2(Γ;Rd) 6 2ψ(t)‖ϕ‖L2(Γ) ∈ L2(〈0, T 〉) .

Therefore, from (13) we conclude

〈 vd+1 | ψϕ 〉L2(0,T ;L2(Γ)) = 0 ,

and by the density of tensor products in L2(0, T ; L2(Γ)), we have vd+1 = 0 a.e. on Γd, implying
that vd+1 ∈ L2(0, T ; H1

0(Ω)).

The fact that V = D(Ṽ )0 can be proved analogously.
The last two statements follow from Lemma 4. Namely, for the third one let us take u ∈ V

and its approximating sequence (un) ⊆ Sb given by Lemma 4. Using the same reasoning as in
the first part of this proof, we obtain

W ′〈Du, u 〉W =

∫
Ω
ud+1(·, T )ud+1(·, T ) dx > 0 .

Q.E.D.

Corollary 1. The operator L, given by (4), defines an isomorphism from V to L2(ΩT ; Rd+1).

Two-field theory with partial coercivity

One of the assumptions of the above corollary is the positivity condition (F2), which, for our
system, reads c − 1

4A−1b · b > γ > 0 on ΩT , for some constant γ. In particular, coefficient c in
the heat equation should be uniformly positive on ΩT , and thus the result of Corollary 1 does
not apply if c = 0. A similar situation occurs in the treatment of elliptic equations, such as the
stationary diffusion equation. In order to overcome this problem for elliptic equations, in [EG2,
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EG3] the authors proposed the two-field theory of Friedrichs systems with partial coercivity,
which enabled them to consider the case c = 0 as well.

We shall now show that their method can also be applied to the parabolic equation, namely
the following initial boundary value problem (for simplicity here we shall consider only the case
b = 0) {

∂tu− div x(A∇xu) = f in ΩT

u = 0 on Γ0 ∪ Γd .

To be specific, in order to apply the two fields theory with partial coercivity, our coefficient
matrix fields need to be of the following form

Ak =

[
0 Bk

(Bk)> ak

]
and C =

[
Cd 0
0> cd+1

]
,

where Bk ∈ Rd are constant vectors, ak ∈ W1,∞(ΩT ), Cd ∈ L∞((ΩT ; Md(R))) and cd+1 ∈
L∞(ΩT ), k ∈ 1..(d+ 1).

In our particular case (with b = 0 and c = 0) we have Bk = ek, k ∈ 1..d, Bd+1 = 0, ak = 0
for k ∈ 1..(d+ 1), Cd = A−1 and cd+1 = 0.

To obtain the well-posedness result, one needs to verify that the following two conditions of
Theorem 3.1 in [EG3] hold:

(∃µ1 > 0)(∀ ξ = (ξd, ξd+1) ∈ Rd+1)
(
C + C> +

d+1∑
k=1

∂kAk

)
ξ · ξ > 2µ1|ξd|2 (a.e. on Ω) ,

(∃µ2 > 0)(∀ u ∈ V ∪ Ṽ )
√
〈 Lu | u 〉L2(ΩT ;Rd+1) + ‖Bud+1‖L2(ΩT ;Rd) > µ2‖ud+1‖L2(ΩT ) ,

where Bud+1 :=
∑d+1

k=1 Bk∂kud+1 = ∇xud+1. It turns out that for our system both conditions are

trivially fulfilled (the spaces V and Ṽ are the same as before): the former condition reduces to
A > µ−1

1 I almost everywhere on ΩT , while the latter is a simple consequence of the Poincaré
inequality (it suffices to consider only the term ‖Bud+1‖L2(ΩT ;Rd) on the left-hand side). Therefore,

we have the well-posedness of the initial boundary value problem (10) even if c vanish:

Theorem 6. The restriction of operator

L
[

ud

ud+1

]
=

[
∇xud+1 + A−1ud

∂tud+1 + div xud

]
to

V =
{

u = (ud, ud+1) ∈W : ud+1 ∈ L2(0, T ; H1
0(Ω)), ud+1(·, 0) = 0 a.e. on Ω

}
is an isomorphism from V to L2(ΩT ; Rd+1).

5. Boundary operator M

In the previous section we have seen that subspaces V and Ṽ satisfy conditions (V), and thus
we have the well-posedness result. We also know [AB2] that these conditions are equivalent to
(M), in the sense that there exists at least one operator M ∈ L(W ;W ′) satisfying (M), such that
V = ker(D −M).

In this section we want to check whether one of these operators M satisfies (11). For given

V and Ṽ satisfying (V), we are aware of two possible ways for construction of the corresponding
M : the first one is given in [EGC, Theorem 4.3] and [AB2, Theorems 6 and 7], while the second
is described in [AB2, Theorem 8].

Let us remark that the first construction can be performed only if V + Ṽ is closed in the
graph space W . We recall results from [EGC, AB2] in the following theorem.
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Theorem 7. Let V and Ṽ be two subspaces of W satisfying (V).
a) Let us assume that there exist operators P,Q ∈ L(W ) such that

(14)

P 2 = P and Q2 = Q ,

imP = V and imQ = Ṽ ,

PQ = QP .

If we define M ∈ L(W ;W ′) by

W ′〈Mu, v 〉W = W ′〈DPu, P v 〉W − W ′〈DQu, Qv 〉W
+ W ′〈D(P +Q− PQ)u, v 〉W − W ′〈Du, (P +Q− PQ)v 〉W ,

for u, v ∈W , then V = ker(D −M), Ṽ = ker(D +M∗), and M satisfies (M).

b) Operators P and Q from (a) exist if and only if V + Ṽ is closed in W . In this case, P and

Q can be constructed in the following way: let V0 := V ∩ Ṽ , and let us denote by V1 the
〈 · | · 〉L–orthogonal complement of V0 in V , by V2 the 〈 · | · 〉L–orthogonal complement of V0

in Ṽ , and by V3 the 〈 · | · 〉L–orthogonal complement of V + Ṽ in W , so that W is the direct
sum of Vi, i ∈ 0..3. If w = w0 + w1 + w2 + w3 is a decomposition of an arbitrary w ∈ W
corresponding to this direct sum, then P and Q can be defined by

Pw := w0 + w1 and Qw := w0 + w2 .

In order to apply the above theorem, we need the following lemma.

Lemma 5. If V and Ṽ are as defined in section 4, then V + Ṽ is closed in W .

Dem. It is obvious that

V + Ṽ = {u ∈W : ud+1 ∈ L2(0, T ; H1
0(Ω))} .

The closedness of this space in W now easily follows from (5) and the closedness of L2(0, T ; H1
0(Ω))

in L2(0, T ; H1(Ω)).
Q.E.D.

For P and Q defined as in Theorem 7(b), we have

(P +Q− PQ)w = w0 + w1 + w2 ,

which together with (V2) and the symmetry of D gives the following formula for M

(15)
W ′〈Mu, v 〉W = W ′〈Du1, v1 〉W − W ′〈Du2, v2 〉W

+ W ′〈D(u0 + u1 + u2), v3 〉W − W ′〈Du3, v0 + v1 + v2 〉W ,

where u = u0 + u1 + u2 + u3 and v = v0 + v1 + v2 + v3 are decompositions of arbitrary u, v ∈ W
as in Theorem 7(b). Unfortunately, up to now we still do not know whether this M satisfies (11)
even for smooth functions u and v. One can easily check that if the above M satisfies (11), and
if every ui, vi is smooth, i ∈ 0..3, then one has the equality∫ T

0

∫
Γ

(
−u3

d+1 νd · v3
d + v3

d+1 νd · u3
d

)
dSx dt+

∫
Ω
u3
d+1(·, T )

(
2v1

d+1(·, T ) + v3
d+1(·, T )

)
dx

+

∫
Ω
v3
d+1(·, 0)

(
2u2

d+1(·, 0) + u3
d+1(·, 0)

)
dx = 0 .

Since we have no argument for this formula to be valid, we suspect that operator given by (15)
does not satisfy (11).

Next we turn our attention to the second construction of operator M . First, let us recall
Theorem 8 from [AB2].
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Theorem 8.
a) If V and Ṽ are two subspaces of W that satisfy (V) and if there exists a closed subspace

W2 ⊆ C− of W , such that V +̇W2 = W , then there exists an operator M ∈ L(W ;W ′)
satisfying (M) and V = ker(D −M). If we define W1 as 〈 · | · 〉L-orthogonal complement of
W0 in V , so that W = W1+̇W0+̇W2, and denote by R1, R0, R2 projectors corresponding to
this direct sum, then one such operator is given by M = D(R1 −R2).

b) Let M ∈ L(W ;W ′) be an operator satisfying (M), and denote V = ker(D − M). If we
denote by W2 the orthogonal complement of W0 in ker(D + M), then W2 ⊆ C− is closed,
V +̇W2 = W , and M coincides with the operator constructed in (a).

In the theorem above C− stands for the set of all nonpositive vectors in W with respect to
D, i. e.

C− := {u ∈W : W ′〈Du, u 〉W 6 0} .

Remark. By Lemma 12 in [AB2], if W ′′2 ⊆ C− is a subspace of W such that V + W ′′2 = W ,
then there exists a closed subspace W2 ⊆W ′′2 of W , such that W2 ⊆ C− and V +̇W2 = W .

Remark. In Theorem 8(a) the space W1 can be any closed subspace of V , such that W =
W1+̇W0+̇W2, and not necessarily the 〈 · | · 〉L-orthogonal complement of W0 in V . The similar
statement holds for W2 in Theorem 8(b): W2 can be any closed subspace of ker(D + M), such
that V +̇W2 = W .

Let us for the moment assume that formula (11) defines an operator M ∈ L(W ;W ′) satisfying
(M). Then for any u, v ∈ H1(ΩT ; Rd+1) we have

W ′〈 (D +M)u, v 〉W = 2

∫ T

0

∫
Γ
vd+1 νd · ud dSx dt+ 2

∫
Ω
ud+1(·, T )vd+1(·, T ) dx .

We would like to find the expression for D +M , valid for arbitrary u, v ∈W .

Lemma 6. If formula (11) defines an operator M ∈ L(W ;W ′) satisfying (M), then for u, v ∈W
and un ∈ H1(ΩT ; Rd+1) such that un −→ u in W, it holds

W ′〈 (D +M)u, v 〉W = 2 lim
n

∫ T

0

∫
Γ
vd+1 νd · un

d dSx dt+ 2

∫
Ω
ud+1(·, T )vd+1(·, T ) dx .

Dem. As the first step let us take u ∈ H1(ΩT ; Rd+1), v ∈ W and vn ∈ H1(ΩT ; Rd+1) such that
vn −→ v in W. Then by the continuity of D +M one has

W ′〈 (D +M)u, v 〉W = 2 lim
n

(∫ T

0

∫
Γ
vnd+1 νd · ud dSx dt+

∫
Ω
ud+1(·, T )vnd+1(·, T ) dx

)
.

By Lemma 2, we have vnd+1 −→ vd+1 in W (0, T ) and consequently

(16)
vnd+1 −→ vd+1 in L2(0, T ; L2(Ω)) ,

vnd+1(·, T ) −→ vd+1(·, T ) in L2(Ω) .

Since u ∈ H1(ΩT ; Rd+1), it follows that νd · ud ∈ L2(∂ΩT ), and the first convergence in (16)
implies ∫ T

0

∫
Γ
vnd+1 νd · ud dSx dt −→

∫ T

0

∫
Γ
vd+1 νd · ud dSx dt .

Similarly, the second convergence in (16) implies∫
Ω
ud+1(·, T )vnd+1(·, T ) dx −→

∫
Ω
ud+1(·, T )vd+1(·, T ) dx ,
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and thus

W ′〈 (D +M)u, v 〉W = 2

∫ T

0

∫
Γ
vd+1 νd · ud dSx dt+ 2

∫
Ω
ud+1(·, T )vd+1(·, T ) dx .

Let us now take u, v ∈ W and un ∈ H1(ΩT ; Rd+1) such that un −→ u in W . By the above
formula and the continuity of D +M we have

W ′〈 (D +M)u, v 〉W = 2 lim
n

(∫ T

0

∫
Γ
vd+1 νd · un

d dSx dt+

∫
Ω
und+1(·, T )vd+1(·, T )

)
dx .

The convergence of the second integral in above limit can be achieved similarly as in the first
step, and thus we have the claim.

Q.E.D.

Let us denote

W ′′2 :=
{

u = lim
n

un ∈W : un ∈ H1(ΩT ; Rd+1) , ud+1(·, T ) = 0 a.e. on Ω

& νd · un
d −⇀ 0 in L2(0, T ; H−

1
2 (Γ))

}
.

Lemma 7. If formula (11) defines an operator M ∈ L(W ;W ′) satisfying (M), then

ker(D +M) = W ′′2 .

Dem. Let us first note that (D + M)u = 0 if and only if W ′〈 (D + M)u, v 〉W = 0, for every
v ∈ H1(ΩT ; Rd+1). By Lemma 6, W ′′2 ⊆ ker(D + M), so it remains to prove the converse
inclusion.

Let u ∈ ker(D + M) and un ∈ H1(ΩT ; Rd+1) such that un −→ u in W. Now we proceed
similarly as before: we take v = (0, vd+1)> ∈ H1(ΩT ; Rd+1) where vd+1(t,x) = g(t)h(x) with
g ∈ C∞c (〈0, T ]), g(T ) = 1 and h ∈ H1

0(Ω). Then by Lemma 6 we have

0 = W ′〈 (D +M)u, v 〉W = 2

∫
Ω
ud+1(·, T )vd+1(·, T ) dx = 2

∫
Ω
ud+1(·, T )h dx ,

and as h is arbitrary, ud+1(·, T ) vanishes.
Using again Lemma 6, we now have

0 = W ′〈 (D +M)u, v 〉W = lim
n

∫ T

0

∫
Γ
vd+1 νd · un

d dSx dt ,

for arbitrary v ∈W . Thus, the restriction of vd+1 to Γd is an arbitrary element of L2(0, T ; H
1
2 (Ω)),

which implies νd · un
d −⇀ 0 in L2(0, T ; H−

1
2 (Ω)).

Q.E.D.

From lemmas 3 and 7 it follows that if formula (11) defines an operator M ∈ L(W ;W ′)
satisfying (M), then (by (M2)) V +W ′′2 = W . Although the expressions describing functions from
V and W ′′2 appear to be relatively simple, we do not know whether this equality really holds. In
the sequel we shall prove the converse statement as well, i.e. if V +W ′′2 = W , then M defined by
(11) is good. In order to do that we shall make use of the first remark following Theorem 8. We
start with a simple lemma.

Lemma 8. The space W ′′2 is nonpositive with respect to D, i.e. W ′′2 ⊆ C−.

Dem. If u and un are as in definition of W ′′2 , then, as before, we have

W ′〈Du, u 〉W = lim
n

W ′〈Dun, un 〉W = 2 lim
n

∫ T

0

∫
Γ
und+1 νd · un

d dSx dt−
∫

Ω
u2
d+1(·, 0) dx .

By Lemma 2 and Theorem 10 from Appendix we have und+1 −→ ud+1 in L2(0, T ; H
1
2 (Γ)), and as

νd · un
d −⇀ 0 in L2(0, T ; H−

1
2 (Γ)) by definition of W ′′2 , it follows that the above limit vanishes, so

W ′〈Du, u 〉W = −
∫

Ω
u2
d+1(·, 0) dx 6 0 ,

which proves the lemma.
Q.E.D.
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Theorem 9. If V + W ′′2 = W , and if W2 ⊆ W ′′2 is a closed subspace of W satisfying W2 ⊆ C−

and V +̇W2 = W , then operator M constructed in Theorem 8(a) satisfies (11) for any smooth u
and v.

Dem. Let u = u1 + u0 + u2 be the decomposition of an arbitrary u ∈ W that corresponds to the
direct sum from Theorem 8(a), and let R1, R0, R2 be the corresponding projectors. Since R2u =
u2 = (u2,d, u2,d+1)> ∈ W2 ⊆ W ′′2 , by definition of W ′′2 , there is a sequence un ∈ H1(ΩT ; Rd+1)

converging to u2 in W , and satisfying νd · un
d −⇀ 0 in L2(0, T ; H−

1
2 (Γ)). By Theorem 4, for

arbitrary v ∈ H1(ΩT ; Rd+1) we then have

W ′〈DR2u, v 〉W = lim
n

∫ T

0

∫
Γ
vd+1 νd · un

d dSx dt+

∫ T

0

∫
Γ
u2,d+1 νd · vd dSx dt

+

∫
Ω
u2,d+1(·, T )vd+1(·, T ) dx−

∫
Ω
u2,d+1(·, 0)vd+1(·, 0) dx .

Since u2 ∈W ′′2 , the first and the third integral in the above expression vanish. As u−u2 = u0+u1 ∈
W0 + W1 = V , it follows that ud+1 − u2,d+1 ∈ L2(0, T ; H1

0(Ω)) and ud+1(·, 0) − u2,d+1(·, 0) = 0.
Therefore, in the second and the fourth integral we can replace u2,d+1 by ud+1, which leads to

(17) W ′〈DR2u, v 〉W =

∫ T

0

∫
Γ
ud+1 νd · vd dSx dt−

∫
Ω
ud+1(·, 0)vd+1(·, 0) dx .

In order to find a similar expression for DR1, let us now denote by un ∈ H1(ΩT ; Rd+1) a
sequence converging to u1 in W . Then for any v ∈ H1(ΩT ; Rd+1) one has

W ′〈DR1u, v 〉W = lim
n

∫ T

0

∫
Γ
vd+1 νd · un

d dSx dt+

∫ T

0

∫
Γ
u1,d+1 νd · vd dSx dt

+

∫
Ω
u1,d+1(·, T )vd+1(·, T ) dx−

∫
Ω
u1,d+1(·, 0)vd+1(·, 0) dx .

In this case, the second and the fourth integral vanish, and since u−u1 = u0+u2 ∈W0+W2 ⊆W ′′2 ,
we have ud+1(·, T )− u1,d+1(·, T ) = 0, and therefore it follows that

(18)

∫
Ω
u1,d+1(·, 0)vd+1(·, 0) dx =

∫
Ω
ud+1(·, 0)vd+1(·, 0) dx .

In order to get a similar result for the first integral in the above sum, let us take a sequence

wn ∈ H1(ΩT ; Rd+1) converging to u0 + u2 in W , and satisfying νd ·wn
d −⇀ 0 in L2(0, T ; H−

1
2 (Γ)).

For arbitrary v ∈ H1(ΩT ; Rd+1) we then have

lim
n

∫ T

0

∫
Γ
vd+1 νd · wn

d dSx dt = 0 ,

and therefore

lim
n

∫ T

0

∫
Γ
vd+1 νd · un

d dSx dt = lim
n

∫ T

0

∫
Γ
vd+1 νd · (un

d + wn
d ) dSx dt .

This, together with (17) and (18), gives

W ′〈Mu, v 〉W = W ′〈D(R1 −R2)u, v 〉W

= lim
n

∫ T

0

∫
Γ
vd+1 νd · (un

d + wn
d ) dSx dt−

∫ T

0

∫
Γ
ud+1 νd · vd dSx dt

+

∫
Ω
ud+1(·, T )vd+1(·, T ) dx +

∫
Ω
ud+1(·, 0)vd+1(·, 0) dx

for v ∈ H1(ΩT ; Rd+1). Since un + wn −→ u1 + u0 + u2 = u in W , it follows that M satisfies (11).
Q.E.D.
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Corollary 2. Formula (11) defines an operator M ∈ L(W ;W ′) satisfying (M) if and only if
V +W ′′2 = W .

6. Concluding remarks

It is known that the abstract theory of Friedrichs systems can be applied to elliptic equations
[EGC, AB4, BDG], and some applications to second-order hyperbolic equations are also known
[ABV1, ABV2]. In this paper we have investigated an application of this theory to a second-order
parabolic equation, namely to the heat equation. In particular, we wanted to check whether the
results of [ABV1], such as Theorem 3, can be applied. This motivated our choice of the represen-
tation for heat equation in a form of the Friedrichs system which is close to the representation of
its stationary counterpart, for which results such as Theorem 3 can be applied.

However, we have proved that the result of Theorem 3 cannot be applied in this setting,
although there is a natural choice of matrix field M that enforces the Dirichlet boundary condition
for the starting equation.

By changing the approach and using intrinsic conditions of Ern, Guermond and Caplain
[EGC], we were able to prove a well-posedness result for the Dirichlet boundary condition. The
question whether our matrix field M generates a good operator M via (2) appears to be equivalent
to the equality W = V + W ′′2 . We guess that this statement is true, although we are not able
to prove it at the moment. There are some technical difficulties in the related calculations
arising from the interplay of function spaces involved: the graph space as a natural framework
for Friedrichs systems and the evolution spaces as a natural framework for the heat equation.

We also believe that other types of boundary conditions (e.g. the Neumann condition) can be
treated in this setting as well. It is possible that some more complicated spaces, like the Lions-

Magenes space H
1
2
00, would appear here, which could make the calculations even more challenging.

These spaces appear naturally when one wants to treat mixed type boundary conditions [LM,
T]. Since our setting does not distinguish between the time variable and space variables, our zero
initial condition together with the Neumann boundary condition on Γd may appear as a kind of
mixed boundary condition for our system.

Perhaps the above technical difficulties could be resolved by a development of the theory of
Friedrich systems which is more natural for applications to evolution equations, as it was done in
the classical setting [Ra].

Appendix

In this appendix we summarise some basic facts regarding evolution spaces, which we have
used in the paper (the details can be found in [GGZ]). First we recall the notion of measurability
and Bôchner integrability for functions u : S → X, where X is a Banach space, and S ⊆ R is an
open interval.

A function u : S → X is said to be strongly measurable if it can be strongly approximated
(in the norm of Banach space X) almost everywhere on S by a sequence (sn) of simple functions.
A simple function is any function of the form

s(t) =

n∑
i=1

χBi(t)ai ,

for some n ∈ N, a1, . . . , an ∈ X and measurable sets B1, . . . , Bn ⊆ S of finite measure. If every
Bi is an interval, s is called the step function.

A strongly measurable function u is said to be Bôchner integrable if there exists its approxi-
mation by simple functions which additionally satisfies

lim
n

∫
X
‖u(t)− sn(t)‖X dt = 0 .
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By the Bôchner theorem, a strongly measurable function is Bôchner integrable if and only if the
real function t 7→ ‖u(t)‖X is integrable on S. Therefore, for 1 6 p <∞ one introduces

Lp(S;X) :=
{

u : S −→ X : u is strongly measurable and

∫
S
‖u‖pX dt <∞

}
,

and by Lp(S;X) all equivalence classes of almost everywhere equal elements of Lp(S;X).
The space Lp(S;X) is a Banach space, with norm

‖u‖Lp(S;X) :=
(∫

S
‖u‖pX dt

) 1
p
,

and if X is a Hilbert space, then L2(S;X) is also a Hilbert space with inner product

〈 u | v 〉L2(S;X) :=

∫
S
〈 u | v 〉X dt .

Step functions are dense in Lp(S;X), and as the characteristic function of an interval can be
approximated by smooth functions in Lp the density of C∞c (S;X) in Lp(S;X) follows. Further-
more, for a Banach space Y which is densely imbedded in X, the space Lp(S;Y ) is also densely
imbedded in Lp(S;X). For the special case X = L2(Ω), with Ω ⊆ Rd open, S and Ω bounded, one
can naturally identify spaces of continuous functions C(ClS × Cl Ω) and C(ClS; C(Cl Ω)), which
leads (by density) to isometric isomorphism between L2(S × Ω) and L2(S; L2(Ω))

Throughout the paper we use the following result (for p = 1 it is classical; the generalisation
is straightforward).

Theorem 10. If X and Y are two Banach spaces and T ∈ L(X;Y ), then mapping T defined by

(T u)(t) := T (u(t))

is a continuous linear operator from Lp(S;X) to Lp(S;Y ).

The generalised Hölder inequality for evolution spaces states that if u ∈ Lp(S;X) and v ∈
Lp′(S;X ′), with 1

p + 1
p′ = 1, then real function t 7→ X′〈 v(t), u(t) 〉X is integrable and∫

S
X′〈 v(t), u(t) 〉X dt 6 ‖u‖Lp(S;X)‖v‖Lp′ (S;X′) .

Moreover, the characterisation of the dual space also holds:

Theorem 11. If X is a separable and reflexive Banach space, then for every f ∈ Lp(S;X)′ there
exists unique v ∈ Lp′(S;X ′) such that

Lp(S;X)′〈 f, u 〉Lp(S;X) =

∫
S
X′〈 v(t), u(t) 〉X dt , u ∈ Lp(S;X) .

The mapping f 7→ v is an isometric isomorphism from Lp(S;X)′ to Lp′(S;X ′).

We recall that the set

W (0, T ) =
{
u ∈ L2(0, T ; H1(Ω)) : ∂tu ∈ L2(0, T ; H−1(Ω))

}
,

is a Banach space with norm

‖u‖W (0,T ) =
√
‖u‖2

L2(0,T ;H1(Ω))
+ ‖∂tu‖2L2(0,T ;H−1(Ω))

.

For further properties we refer to [LM]. In particular, in [LM, Chapter I, Theorem 3.1, Lemma
12.1] the following continuity property of such functions is proved.

Theorem 12. The space W (0, T ) is continuously imbedded into C([0, T ]; L2(Ω)).
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[AB4] Nenad Antonić, Krešimir Burazin: Boundary operator from matrix field formulation of boundary
conditions for Friedrichs systems, J. Diff. Eq. 250 (2011) 3630–3651.
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